CS 343H: Honors Artificial Intelligence

Probability

Prof. Peter Stone — The University of Texas at Austin

[These slides based on those of Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Today

= Probability

= Random Variables

Joint and Marginal Distributions
Conditional Distributions

Product Rule, Chain Rule, Bayes’ Rule
Inference

Independence

= You’ll need all this stuff A LOT for the next
few weeks, so make sure you go over it
now!




Inference in Ghostbusters

= Aghostisin the grid
somewhere

= Noisy sensor readings tell how
close a square is to the ghost.
Most likely observations:

= On the ghost: red
= 1 or 2 away: orange
= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Ghostbusters, no probabilities
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Uncertainty

» General situation:

= Observed variables (evidence): Agent knows certain

things about the state of the world (e.g., sensor readings
or symptoms)

= Unobserved variables: Agent needs to reason about

other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
using beliefs and knowledge to perform inference




Random Variables

= Arandom variable is some aspect of the world about which we
(may) have uncertainty

= R=lIsitraining?

= T=Isit hotorcold?

= D =How long will it take to drive to work?
= L=Whereis the ghost?

= We denote random variables with capital letters

= Like variables in a CSP, random variables have domains

= Rin {true, false} (often write as {+r, -r})

= Tin {hot, cold}

= Din [0, x)

= Lin possible locations, maybe {(0,0), (0,1), ...}




= Associate a probability with each value

= Temperature:

Probability Distributions

(1)
T P
hot 0.5
cold | 0.5

= Weather:

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0




Probability Distributions

= Unobserved random variables have distributions

P(T)

T P
hot 0.5
cold | 0.5

= A discrete distribution is a table of probabilities of values

= A probability (lower case value) is a single number

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

P(W =rain) =0.1

= Must have: v.]j P(‘Y — .}‘) 2 O and Z P(/\r

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unigue




Joint Distributions

= A joint distribution over a set of random variables: Xi1.Xo,... X5

specifies a real number for each assignment (or outcome):

P()&"l = L1, A2 = T2, ... Xpn = il’-n)
P(xq,xo,...20)

= Must obey:
Y P(LE]_,wQ,....’L’-n,) 2 O

Z 1)(:171:&:2: R 'l;'n.) =1

(x1,27,...77,)

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

P, w)

T W P
hot | sun 0.4
hot | rain 0.1
cold | sun 0.2
cold | rain 0.3




Probabilistic Models

I L . Distribution over TW
= A probabilistic model is a joint distribution

over a set of random variables T W p

= Probabilistic models: hot sun 0.4

= (Random) variables with domains hot rain 0.1
Assignments are called outcomes

= Joint distributions: say whether assignments cold >un 0.2
(outcomes) are likely cold rain 0.3
= Normalized: sum to 1.0
= |deally: only certain variables directly interact Constraint over TW
= Constraint satisfaction problems: T w P
= Variables with domains hot sun T
= Constraints: state whether assignments are .
possible hot rain F
= |deally: only certain variables directly interact cold sun F
cold rain T




Events

= An eventis a set E of outcomes

P(E) = > P(zy...7n)
(z1...zn)ekE
= From a joint distribution, we can calculate
the probability of any event

= Probability that it’s hot AND sunny?
= Probability that it’s hot?

= Probability that it’s hot OR sunny?

= Typically, the events we care about are
partial assignments, like P(T=hot)

PO, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




= P(+x, +y) ?

s P(+x)?

= P(-y OR +x) ?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

PO

P, w) T p

hot | sun | 04 P(t) =Y P(t.s) cold | 0.5
hot rain 0.1 ° P(W)

cold sun 0.2 W b

cold rain 0.3 un 0.6

P(s) = ; P(t, s) — ~

P(X1=mx1) =) P(X1 =11, X =xp)
LD



Quiz: Marginal Distributions

P(X,Y)
X Y P
+X +y 0.1
+X -y 0.5
-X +y 0.2
-X -y 0.2

P(X)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a,b
P(alb) = (a,b)
12(b)
P(T, W)
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(a,b)

P(a)

(W = 8.7 = ¢ 0.2
P(“T —_— SlT —— C,) — 1 ( ‘ b'T () —_—
P(T = ¢) 0.5

__—

=P(W=3s8T=c)+P(W=rT=c)
= 02403 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y) ?

= P(-x | +y)?

= Py | +x)?



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W |1 = hot) POT. W)

W P T W p
: ::i: gi hot sun 0.4
— hot rain 0.1
EE/ P(W|T' = cold) cold | sun 0.2

W P cold rain 0.3

sun 0.4

rain 0.6




P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Normalization Trick

P(W =s,T =¢)
P(T = ¢)
PW =3s5,T=nr¢)

- PW=sT=¢c)+ PW=nrT=n12)
0.2

P(W=sT=r¢)=

_ — 0.4 .
0.2 10.3 P(W|T = ¢)
> W P
sun 0.4
(W = 1.T = ¢ [ 0.6
POW = rlT = ¢) = HHP,T —1..) ) rain

P(W=rT=r¢)
P(W=3sT=rc)+ P(W=rT=c)
0.3

|
|
-
>



P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Normalization Trick

P(W=sT=r¢)=

SELECT the joint

probabilities
matching the
evidence

ﬁ

P(W =s,

T=c)

P(T =c¢)
PW =357 =c)

—— I)(“- = s, .-Iv — (:‘) _+_ ,)(n =7, -lv — (:)

0.2
0.2+4+0.3

=04

P(c, W)

T

W

cold

sun

0.2

cold

rain

0.3

P(W=+T=c¢
FW =yT=¢e)= (i ©)

P(/]? —

)

NORMALIZE the
selection
(make it sum to one)

ﬁ

P(W=rT=n¢)

T PW=sT=c)+ P(W=nrT=c)

0.3

=0.6

0.2+0.3

P(W|T = ¢)
W P
sun 0.4
rain 0.6




P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

= Why does this work?

Normalization Trick

SELECT the joint

probabilities i
matching the P(c, W)
evidence T W P
ﬁ
cold| sun | 0.2
cold | rain | 0.3
_ Plxq.x
P(aqlan) = (€1, 2) —
P(TQ) Zj.'

NORMALIZE the
selection
(make it sum to one)

ﬁ

1)(:’:1: '*UQ)
.\ P(r1.72)

P(W|T = ¢)
W P
sun 0.4
rain 0.6




= P(X | Y=-y) ?
P(X,Y)
X Y P
+X +y 0.3
+X -y 0.1
-X +y 0.5
-X -y 0.1

Quiz: Normalization Trick

SELECT the joint

probabilities
matching the
evidence

ﬁ

NORMALIZE the
selection
(make it sum to one)

>



= (Dictionary) To bring or restore to a

s Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

_>
Z=0.5

To Normalize

normal condition

N

All entries sum to ONE

W P
sun 0.4
rain 0.6

Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

>

Z =250

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities
= P(ontime | no reported accidents) = 0.90

= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated




Inference by Enumeration

= General case:

= Evidence variables: Ey..
= Query* variable: 2
= Hidden variables: Hy...

= Step 1: Select the
entries consistent with
the evidence

X )
M3 0.38
-1 0.2

& | 0.07
_ —
1 | ooz |

@l‘i 5 | oo | €27

P(Q,e1...ep) = 2.

.b‘k=€:'1...€'k:

;‘{11 XQ, .. ..-X;n_.

All variables
H;

= Step 2: Sum out H to get joint of

Query and evidence

We want:

h«l -..hfv’

* Works fine with
multiple query
variables, too

P(Qlel .. elst)

= Step 3: Normalize

“Z
Z=3 F(Qe e
q

1

P(Qley--er) = sP(Q,e:---ep)

A



Inference by Enumeration

m P(W)? S T W P
p(W=sun) = 0.65 = 0.3+0.1+0.1+0.15 summer | hot sun 0.30
p(W=rain) = 0.35 = 0.05+0.05+0.05+ 0.2

summer | hot rain 0.05

summer | cold sun 0.10

summer | cold rain 0.05

= P(W | winter)?

' 1
p(W=sun | winter) 0.5 winter hot sun | 0.10

0.25/0.5

0.1+0.15/0.1+0.05+0.15+0.2

0.25/0.5

p(W=rain | winter) = 0.5 0.05+0.2/0.1+0.05+0.15+0.2 winter hot rain 0.05

winter | cold sun 0.15

winter | cold rain 0.20

= P(W | winter, hot)?
p(W=sun | winter, hot) = 2/3 = 0.1/0.1+0.05
p(W=rain | winter, hot) = 1/3 0.05/0.1 +0.05



Inference by Enumeration

= Obvious problems:
= Worst-case time complexity O(dn)
= Space complexity O(dn) to store the joint distribution

= What about continuous distributions?



The Product Rule

= Sometimes have conditional distributions but want the joint

Pz, y)
P(y)P(z|y) = P(x,y) <& ram=",;

"%.g.



The Product Rule

P(y)P(zly) = P(z,y)

= Example:
P(DW) P(D,W)
P(W) D W | P D W
R P wet sun 0.1 wet sun
<un | 0.8 dry sun | 0.9 <:> dry sun
rain 0.2 wet rain | 0.7 wet rain
dry rain | 0.3 dry rain




The Chain Rule

= More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(x1,20,23) = P(z1)P(x2|z1) P(x3|z1,22)

P(xy,x,...2n) = [[ Plzi|zy ... 2zi—1)
2

= Why is this always true?






Bayes’ Rule

Two ways to factor a joint distribution over two variables:

P(x,y) = P(z|y)P(y) = P(y|z)P(x)
likelihood
Dividing, we get: orior
P(ylx)
P(xly) = ——"FP(x)
P(y)

normalization

Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

In the running for most important Al equation!

That’s my rule! }



http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P (effect|cause) P(cause)
P (effect)

P(causeleffect) =

= Example:
= M: meningitis, S: stiff neck
P(+m)=0.0001 |
xample
P(+s|+m) =08 r Jo0
P(+s| —m) =0.01

P(am| + 5) P(+s| +m)P(+m) P(+s|+m)P(+m) B 0.8 x 0.0001
B P(+s) ~ P(+s| +m)P(+m) 4+ P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999
= Note: posterior probability of meningitis still very small =0.0008

= Note: you should still get stiff necks checked out! Why?



Quiz: Bayes’ Rule

, P(DW)
= Given:
j-)( 4/ ) D W P
R P wet sun 0.1
sun 0.8 dry sun 0.9
rain 0.2 wet rain 0.7
dry rain 0.3

» Whatis P(W | dry) ?
p(sun | dry) = p(dry | sun) p(sun)/p(dry) = 0.9*08/Z = .72/ Z
p(rain | dry) = p(dry | rain) p(rain) / p(dry) = 0.3*0.2/Z = 0.06/Z
Z = .72+ .06 = .78



Ghostbusters, Revisited

= Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform .
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)

= E.g. P(R=yellow | G=(1,1)) =0.1

0.10 0.10

= We can calculate the posterior distribution
P(G|r) over ghost locations given a reading

using Bayes’ rule:
P(g|r) o< P(r|g)FP(g) 009 | 017




Ghostbusters with Probability

o7 R [T P

<0.014<0.01

.01<0.018 0.04

L01<0.012<0.01

L01<0.018 0.04
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