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Logistics

• Late assignments accepted until Tuesday (12/12)

• Final: Monday Dec. 18th, 2pm-5pm

− Open notes - handwritten (2 pages)
− No books, no printouts, no electronics
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Final Exam

• Monday Dec. 18th, 2pm-5pm

• TAs and I will proctor (I may need to leave for part in the
middle)

• Covers the whole semester
− Slightly heavier emphasis on material since midterm
− Certainly a question on planning

• Striving for similar difficulty to midterm

• 3 hours rather than 1 hour and 15 minutes

• Samples - Berkeley exams

Peter Stone



Question

• Would you have rather been born 100 years earlier or 100
years later?
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• Probabilistic Reasoning: Now state is unknown

• Bayesian networks – state estimation/inference

• Prior, net structure, and CPT’s known
− Week 4: Utilities
− Week 7: Conditional independence and inference

(exact and approximate)
− Week 9: State estimation over time
− Week 9: Utility-based decisions

• Week 10: What if they’re not known?
− Also Bayesian networks for classification
− A type of machine learning
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Course Recap (cont.)
• After that: More machine learning

− Week 11: Perceptrons and Neural Nets (Deep Learning)
− Week 12: SVMs, Kernels, and Clustering

• Week 13: Classical planning

− Reasoning with first order representations
− So far we had only dealt with propositions
− Back to known transitions, known state, etc.

• Week 14: Philosophical foundations and ethics

It’s all about building agents

Sense, decide, act Maximize expected utility

Peter Stone



Topics not covered

• Knowledge representation and reasoning
. (Chapters 7-9, 11, 12)

• Game theory and auctions (Sections 17.5, 17.6)

• Aspects of learning (Chapters 18, 19)

• Natural language (Chapters 22, 23)

• Vision (Chapter 24)

• Robotics (Chapter 25)

Peter Stone
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Surveys
• TA’s and my surveys

• Negative and positive feedback useful

• Invitation to send more feedback by email

− When I teach the course next, what should I do the
same? What should change?

• Most important: course rating, instructor rating, written
comments
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My Perspective

• I’ve enjoyed teaching this class!

• I’ve been impressed by the levels of questions and
understanding
− You kept me on my toes
− I learned tons!

• Thanks to Josiah, Yinan, and Rohan for handling all the
assignments!

• I’m proud of all of you for sticking with it through what I
think was a demanding course

THANKS!!!

Peter Stone


