
Extended Abstract:
Iteration in ACL2, WITH .. DO

Matt Kaufmann
J Moore

UT Austin (retired)

May 26, 2022

1/10

TALK OVERVIEW

This talk will primarily consist of a demo.

For more about DO loop$ expressions, see the documentation
and supporting materials:
I :DOC LOOP$.
I :DOC DO-LOOP$.
I books/workshops/2022/kaufmann-moore/, especially:

I The input file,
books/workshops/2022/kaufmann-moore/do-loops-
input.lsp;
and

I The output (log) file,
books/workshops/2022/kaufmann-moore/do-loops-
log.txt.

2/10

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DO-LOOP_42
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-input.lsp
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-input.lsp
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-log.txt
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-log.txt

TALK OVERVIEW

This talk will primarily consist of a demo.

For more about DO loop$ expressions, see the documentation
and supporting materials:
I :DOC LOOP$.
I :DOC DO-LOOP$.
I books/workshops/2022/kaufmann-moore/, especially:

I The input file,
books/workshops/2022/kaufmann-moore/do-loops-
input.lsp;
and

I The output (log) file,
books/workshops/2022/kaufmann-moore/do-loops-
log.txt.

2/10

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____LOOP_42
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DO-LOOP_42
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-input.lsp
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-input.lsp
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-log.txt
https://github.com/acl2/acl2/tree/master/books/workshops/2022/kaufmann-moore/do-loops-log.txt

TODAY
Goal for today: Present the basics of how to use DO loop$
expressions, but also exhibit their power:

I Support for imperative programming, stobjs,
multiple-value return, :program mode, and :logic mode

Basic form:
(loop$ WITH ... DO ...)
(It is legal, but unusual, to omit the WITH part.)

Compare with FOR loop$ (see 2020 ACL2 Workshop):
(loop$ FOR ...)

Evaluation strips out certain keywords and calls Common Lisp
loop, for guard-verified and :program-mode evaluation.

3/10

TODAY
Goal for today: Present the basics of how to use DO loop$
expressions, but also exhibit their power:

I Support for imperative programming, stobjs,
multiple-value return, :program mode, and :logic mode

Basic form:
(loop$ WITH ... DO ...)
(It is legal, but unusual, to omit the WITH part.)

Compare with FOR loop$ (see 2020 ACL2 Workshop):
(loop$ FOR ...)

Evaluation strips out certain keywords and calls Common Lisp
loop, for guard-verified and :program-mode evaluation.

3/10

TODAY
Goal for today: Present the basics of how to use DO loop$
expressions, but also exhibit their power:

I Support for imperative programming, stobjs,
multiple-value return, :program mode, and :logic mode

Basic form:
(loop$ WITH ... DO ...)

(It is legal, but unusual, to omit the WITH part.)

Compare with FOR loop$ (see 2020 ACL2 Workshop):
(loop$ FOR ...)

Evaluation strips out certain keywords and calls Common Lisp
loop, for guard-verified and :program-mode evaluation.

3/10

TODAY
Goal for today: Present the basics of how to use DO loop$
expressions, but also exhibit their power:

I Support for imperative programming, stobjs,
multiple-value return, :program mode, and :logic mode

Basic form:
(loop$ WITH ... DO ...)
(It is legal, but unusual, to omit the WITH part.)

Compare with FOR loop$ (see 2020 ACL2 Workshop):
(loop$ FOR ...)

Evaluation strips out certain keywords and calls Common Lisp
loop, for guard-verified and :program-mode evaluation.

3/10

TODAY
Goal for today: Present the basics of how to use DO loop$
expressions, but also exhibit their power:

I Support for imperative programming, stobjs,
multiple-value return, :program mode, and :logic mode

Basic form:
(loop$ WITH ... DO ...)
(It is legal, but unusual, to omit the WITH part.)

Compare with FOR loop$ (see 2020 ACL2 Workshop):
(loop$ FOR ...)

Evaluation strips out certain keywords and calls Common Lisp
loop, for guard-verified and :program-mode evaluation.

3/10

TODAY
Goal for today: Present the basics of how to use DO loop$
expressions, but also exhibit their power:

I Support for imperative programming, stobjs,
multiple-value return, :program mode, and :logic mode

Basic form:
(loop$ WITH ... DO ...)
(It is legal, but unusual, to omit the WITH part.)

Compare with FOR loop$ (see 2020 ACL2 Workshop):
(loop$ FOR ...)

Evaluation strips out certain keywords and calls Common Lisp
loop, for guard-verified and :program-mode evaluation.

3/10

** DEMO **

4/10

REMARKS

The only proof we’ve shown is a guard proof. Support for
proofs involving DO loop$ expressions is under further
development.

Such proof debugging depends on translation to calls of the
recursive function, DO$. See the paper and :DOC do-loop$.

Note that OF-TYPE informs the Common Lisp compiler but
:GUARD does not, much like types vs. guards for a defun.

5/10

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DO-LOOP_42

REMARKS

The only proof we’ve shown is a guard proof. Support for
proofs involving DO loop$ expressions is under further
development.

Such proof debugging depends on translation to calls of the
recursive function, DO$. See the paper and :DOC do-loop$.

Note that OF-TYPE informs the Common Lisp compiler but
:GUARD does not, much like types vs. guards for a defun.

5/10

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DO-LOOP_42

REMARKS

The only proof we’ve shown is a guard proof. Support for
proofs involving DO loop$ expressions is under further
development.

Such proof debugging depends on translation to calls of the
recursive function, DO$. See the paper and :DOC do-loop$.

Note that OF-TYPE informs the Common Lisp compiler but
:GUARD does not, much like types vs. guards for a defun.

5/10

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DO-LOOP_42

A BIGGER EXAMPLE

The following example is from a parser I (Matt) wrote for the
project reported in the workshop paper by Hunt, Ramanathan,
and Moore: “VWSIM: A Circuit Simulator”.

I don’t expect it to make sense in the talk; in fact I’ve removed
comments (and done other formatting) to fit it on the next three
slides.

The point here is just to illustrate that DO loop$ expressions
can be used in “real” code. Note that the following function is
in :program mode.

Imperative “keywords” are capitalized for emphasis.

6/10

A BIGGER EXAMPLE

The following example is from a parser I (Matt) wrote for the
project reported in the workshop paper by Hunt, Ramanathan,
and Moore: “VWSIM: A Circuit Simulator”.

I don’t expect it to make sense in the talk; in fact I’ve removed
comments (and done other formatting) to fit it on the next three
slides.

The point here is just to illustrate that DO loop$ expressions
can be used in “real” code. Note that the following function is
in :program mode.

Imperative “keywords” are capitalized for emphasis.

6/10

A BIGGER EXAMPLE

The following example is from a parser I (Matt) wrote for the
project reported in the workshop paper by Hunt, Ramanathan,
and Moore: “VWSIM: A Circuit Simulator”.

I don’t expect it to make sense in the talk; in fact I’ve removed
comments (and done other formatting) to fit it on the next three
slides.

The point here is just to illustrate that DO loop$ expressions
can be used in “real” code. Note that the following function is
in :program mode.

Imperative “keywords” are capitalized for emphasis.

6/10

A BIGGER EXAMPLE

The following example is from a parser I (Matt) wrote for the
project reported in the workshop paper by Hunt, Ramanathan,
and Moore: “VWSIM: A Circuit Simulator”.

I don’t expect it to make sense in the talk; in fact I’ve removed
comments (and done other formatting) to fit it on the next three
slides.

The point here is just to illustrate that DO loop$ expressions
can be used in “real” code. Note that the following function is
in :program mode.

Imperative “keywords” are capitalized for emphasis.

6/10

(defun next-line-etc (pos str lineno end)
(LOOP$
WITH newline-pos WITH start-pos = pos
WITH next-pos = pos WITH next-lineno = lineno
WITH line = "" WITH comment-p = nil
DO
:VALUES (nil nil nil)
:MEASURE (nfix (- end next-pos)) ; not needed here
(cond
((= next-pos end)
(RETURN (mv line nil nil)))

((and comment-p
(not (member (char str next-pos) ’(#\+ #*))))

(RETURN (mv line next-pos next-lineno)))
(t
(PROGN
(SETQ comment-p (eql (char str next-pos) #*))
(SETQ newline-pos

(search *newline-string* str :start2 next-pos))
(SETQ start-pos

(scan-past-whitespace str next-pos
(or newline-pos end)))

7/10

(cond
(newline-pos
(PROGN
(SETQ next-pos (1+ newline-pos))
(SETQ next-lineno (1+ next-lineno))
(cond
(comment-p (PROGN)) ; just keep going
(t (PROGN

(SETQ line
(let ((s1 (subseq str

start-pos
newline-pos)))

(if (equal line "")
s1

(concatenate ’string line s1))))
(cond
((= next-pos end)
(RETURN (mv line nil nil)))

((eql (char str next-pos) #\+)
(SETQ next-pos (1+ next-pos)))

((eql (char str next-pos) #*) (PROGN))
(t (RETURN

(mv line next-pos next-lineno)))))))))
8/10

(t (RETURN
(mv (if comment-p

line
(let ((s1 (subseq str start-pos end)))

(if line
(concatenate ’string line s1)

s1)))
nil
nil)))))))))

9/10

Thank you. And we thank ForrestHunt, Inc. for the support.

10/10

