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ABSTRACT

Many applications of mix networks such as anonymous Web &row
ing requirerelationship anonymity it should be hard for the at-
tacker to determine who is communicating with whom. Conven-
tional methods for measuring anonymity, however, focusemder
anonymityinstead. Sender anonymity guarantees that it is difficult
for the attacker to determine the origin of any given messaging

the mix network, but this may not be sufficient to ensure retat
ship anonymity. Even if the attacker cannot identify thegioriof
messages arriving to some destination, relationship aniyywill

fail if he can determine with high probability that at leasemf the
messages originated from a particular sender, withoutssaeciy
being able to recognize this message among others.

We give a formal definition and a calculation methodology for
relationship anonymity. Our techniques are similar to ¢hosed
for sender anonymity, but, unlike sender anonymity, retehip
anonymity is sensitive to the distribution of message dasitins.

In particular, Zipfian distributions with skew values chamaistic
of Web browsing provide especially poor relationship amity.
Our methodology takes route selection algorithms into aoto
and incorporates information-theoretic metrics such a®opy and
min-entropy. We illustrate our methodology by calculatirdg-
tionship anonymity in several simulated mix networks.

Categories and Subject Descriptors
C.2.0[Computer-Communication Networks]: Security and pro-
tection; K.6.5Becurity and Protection]

General Terms security
Keywords: Anonymity, Privacy, Mix Networks

1. INTRODUCTION

Mix networks, first proposed by Chaum [3], are a practical way
of achieving anonymity on insecure communication netwotks

intended to provide some degree of anonymity to their usezs e
if some of the mixes are controlled by the adversary.

In this paper, we focus orelationship anonymity As defined
by Pfitzmannet al. [7], “relationship anonymity means that it is
untraceable who communicates with whom.” This is an impurta
property for many practical applications of mix networksr Ex-
ample, users of an anonymous Web browsing or email system of-
ten wish to hide the fact that they are communicating with a pa
ticular destination. Other definitions of anonymity addrassim-
ilar, but slightly different property. For example, Setjan and
Danezis [9] consider the attacker’s probability distribatover all
possible senders and recipients afigen messageWhereas re-
lationship anonymity hides the fact that partyis communicating
with party B, anonymity of an individual message hides the fact
that A sent it (in the case of sender anonymity) or tliats its
intended destination (in the case of recipient anonymity).

Sender anonymity and relationship anonymity are not direct
comparable. Consider a set of senders from an oppressive cou
try who are all anonymously accessing a single politicadiysitive
website. Suppose the network provides perfect sender arityny
i.e, any message exiting the network is equally likely to haweg-or
inated from any active sender. By observing these messhgers,
ever, the attacker can easily infer that all of them have Hrees
destination. For every active sender, the attacker candbtes-
mine with 100% certainty that this sender is communicating with
the website, completely breaking relationship anonymity.

This artificial example indicates that (a) sender anonyimsityot
sufficient for either recipient anonymity, or relationshiponymity;
(b) unlike sender anonymity, relationship anonymity issstére to
the distribution of potential message destinations; andifder
some destination distributions, even a perfectly secinack-box”
mix network cannot guarantee relationship anonymity.

We are also interested in the property calEyond suspicion
in [8]: the destination with which the user is communicatitguld
not appear significantly more likely than any other possdasti-

tuitively, amix is a server that accepts several incoming messagesnation. (We will use an even stronger property thatestination

and forwards them to their respective destinations in sualay
that an outside observer cannot link an outgoing messadeanit
incoming message. Mixes are typically assembled into ndtsyo
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should appear more likely than others.) Standard metrich as
entropy of the attacker’s a-posteriori distribution of gutial des-
tinations do not capture this property. For example, it igrely
possible that in a high-entropy distribution some desimais as-
sociated with a probability which is an order of magnitudghieir
than the probability of any other destination. This callsdtberna-
tive anonymity metrics that better capture the ratio betwa®ba-
bilities associated with different members of the anonyrsét.

Our techniques follow the basic framework of [9], with the ad
ditional emphasis on min-entropy as a measure of anonyifiitg.
use of min-entropy was previously proposed by Tétthl.[10], but
in a very different mix network model.



2. DEFINITIONS AND METRICS

Consider a mix network withV sendersSs,..., Sy and H
destinationsD;, ..., Dg. The natural way to define relationship
anonymity is via the attacker’s a-posteriori probabilRg;; (i.e.,
probability measured after the attacker has completedbssroa-
tions of the mix network) that th&h sender is communicating with
jth destination, wheré < i < N,1 < j < H. Because different
senders may send a different number of messaBés; . .. RA; x|
is not a proper probability distribution: for each sentldRA;; val-
ues add up to the number of messages sent by that sender.

Assume that each send8t sendsn; messagesii, .. ., Tin;-
Each message;, has one destination. L&Amsg,,[1..H] be the
probability distribution of its potential destinations.

Entropy vs. min-entropy. Given a message and the probability
distribution of potential destinations of this message, standard
information-theoretic measure of anonymityeistropyof this dis-
tribution [9, 4]. Informally, entropy is a measure of how fidcom”
the distribution is. A high entropy value implies that thevmerk
provides a high level of anonymity. Entropy of the distribat
RAmsg_[1..H], whereRAmsg_[;] is the probability that the desti-
nation of some messageis D;, is calculated as

RAent, = — Z RAmsg_ [j] log,(RAmsg, [1])

1<G<H

An intuitive interpretation of entropy is that it represettte log-
arithm of the effective size of thenonymity sefor the sender of
a message. For example, a distribution of potential sendieose
entropy is6 can be interpreted as saying that the sender is indistin-
guishable from63 (= 2° — 1) other senders.

Entropy does not always capture the right anonymity prgpert
Consider a distribution of00 potential destinations, in which all
but one are equally likely with probability.009, and a single des-
tination has probability).109. Entropy of this distribution i$.40,
close to the theoretical maximum 6f64. The “beyond suspi-
cion” property is destroyed, however, because one deltima
100 times likelier than any other. Therefore, we also casiun-
entropy which captures the probability of thikeliestdestination:

RAmin, = —log,( (RAmsg_[1]))

max
1<G<H

3. CALCULATING ANONYMITY

Let m1,mo,...,ma be the mix nodes that form the network.
We assume that all routes have the same lerdgthnd that mix
nodes and destinations are distinct. (The model is easéptad
to other scenarios.) Recall that each serfflés sending messages
Til,. .., Tin,;; lt N = 3>, n;. For each message wherel <
i < N’, its flow f; is the time sequence of mix-to-mix messages
that carry the contents af; through the network.

Define the flow matrixFlow : N’ x L — M so thatFlow([s, j]
contains the destination of message DefineFlowCount[l, j] =
counti<i<n’ (Flow[k, j] = my) to be the number of messages
entering mixm; at timet; and leaving it at time; ., (except for
j = L, in which case all messages enter their final destinations).

Consider some messages {z1, ...,y } that entered the net-
work attimet;. Leti, be the index of this message. We recursively
calculate the probabilitmsg_,[4, j] that message;; observed by
the attacker at time; carries the contents af. Initially, for all ¢

1 ifi=1i,

Pmsg, [i, 1] = { 0 otherwise

Now consider time; such tha < j < L, and messageg;;
wherel < i < N’. For every mixm; wherel <[ < M, define

>

Vi€ [1..N'] S.tFlow[i,j]=m,

PthruMix,[l, j] = Pmsg, [4, 5]

This is the probability that one of the messages enteringt time
t; carries the contents af. The attacker need not knowhich
message this is. Then define

Pmsg,[i,j — 1] if m; is compromised

Pmsg,[i,j] = PthruMixg 1,5 —1]

FlowCount[l,j—1] if mi 1S gOOd

Intuitively, this means that a good mix permutes its incagnin
messages and every outgoing message is equally likely ry tter
contents of a given incoming message. By contrast, any garmu
tion carried out by a compromised mix is completely visildete
attacker, and does not change the probability that a givessage
carries the contents of message

Finally,Vj,1 < j < H whereH is the number of destinations

>

Vk€e[1..N'] S.t.Flow[k,L]=D;

RAmsg_[j] = Pmsg, [k, L]

This distribution allows us to compute relationship anoitym
Let z;1, ..., zin, be the messages sent by senferat timet;.
The probability thatS; is communicating with destinatioP; is

RAZ‘]‘ =1- H1§k§ni (1 — RAmngik[j])

4. EXPERIMENTS

We used the methodology described in section 3 to compue rel
tionship anonymity in several types of mix networks. In oxper-
iments, we assume that the number of destinations is equlaéto
number of senders. Not all destinations necessarily reasies-
sages, while some destinations may receive multiple messag

In each experiment, we randomly generate a 5-hop route for ev
ery message. We considefrae-routenetwork, in which the desti-

We assume that message are encrypted with a pairwise key whemation of each hop is selected randomly from all mixes in tse n

sent from mix to mix, and that the global attacker can obstree
origin and destination of each (encrypted) message, yeisll he
can do. In particular, we ignore active attacks such asléscand
floods, intersection and long-term statistical attaclkaffitr analy-
sis, and so on. These attacks would result in even worse arigny
loss than shown by our experiments.

Consider the discretized timeling, ..., ¢;,. Each “moment”
corresponds to one hop in the messages’ routes. Atitingeglobal
attacker observes messaggs, . . ., ¢; - arriving to some subset
of mixes. Eacly;; carries the contents of a single, and for each
x;, there exists someg;; that carries its contents¥{ q1; = x;.)
This correspondence, however, is not directly observapléhb
attacker due to mixing performed at each hop.

work, and astratified network, inspired by [5, 6]. In the latter, the
mixes are split into 5 groups, and the destination ofithehop is
selected randomly from the mixes in tftl group. For each route
configuration, we calculate destination entropy and mitnegy for
all senders, and average the results across 5,000 sinmdatio
When using maximum entropy for comparison purposes, we de-
liberately donot take non-uniform destination selection into ac-
count. Our goal is to demonstrate the effects of non-unifdesti-
nation selection by comparing anonymity when the distidsubf
destinations is skewed and when this distribution is unifofr he
maximum entropy curve represents the latter on our plots.
When the actual destination distribution is not uniforne thax-
imum entropy associated with uniform destination distitrumay



not be achievable even by a perfect “black-box” anonymits- sy
tem. This is precisely our point. An average user of a mix netw
may not know how other users select their destinations. tolg t
peer-to-peer mix network, this information is not avaitablen to
operators of individual nodes. When a user knows only the to-
tal number of other users, network topology, and some assomp
about the fraction of the mixes that are controlled by theeeshry,
anonymity under uniform destination selection providessetine
against which actual anonymity can be compared.

Previous work on anonymity in large mix networks [6] assumed
that all messages are distributed equally across netwokis lat
each hop. This is not realistic unless the ratio of messapgeddes
is very large, which may not always be the case in practioad sc
narios. It is thus important to consider anonymity loss dubad
route selection. If the route selected by some user has tensit-
tions with other users’ routes, then this user will enjoyyvpoor
anonymity even if all mixes on his route are trustworthy. As o
experiments show, this effect is especially pronouncectwarks

where the number of users is comparable to the number of mixes

as will often be the case in peer-to-peer mix networks.

4.1 Impact of destination distribution

Unlike sender anonymity, relationship anonymity is sevesito
the distribution of messages’ destinations. In our firsoetxper-
iments, we consider the uniformly random distributide.( each
sender selects the destination uniformly at random fronfikeel
set of all available destinations) as well as Zipfian disiidns
with various skew parameters. In a Zipfian distribution, résative
probability of occurrence for theth most popular element lgg
whereq is the skew. It is believed that real-world Web browsing
patterns are governed by a Zipfian distributioe, a small fraction
of sites account for the majority of traffic destinations. [2]

In fig. 1, we show the results for a 50-node free-route network
where any node is compromised with a 25% probability. The-num
ber of senders increases frasfi (same as the number of mixes)
to 500. In addition to measuring relationship anonymity, we also
calculate sender anonymity for each message exiting threonet

Anonymity loss due to free route selectionOur first observation
about fig. 1 is that there is a significant anonymity loss réigas
of the destination distribution. This can be explained afistical
properties of random route selection in a free-route neétwor

For example, consider a free-route network with 50 sendwds a
50 mixes. Even if the destination for each message is selecie
formly at random (and relationship anonymity is thus classiin-
ple sender anonymity for each message exiting the netwthg),
effective anonymity set for the average uses iather tharb0. The
primary reason for this inot that 25% of mixes are compromised.
In order to mix well, routes of different messages must haaeym
intersections, and, moreover, messages must arrive totiesec-
tion mix at approximately the same time, which in our ideadiz
model means the mix must occupy the same hop in their respecti
routes. When 50 routes of 5 nodes each are selected randamly f
50 mixes, the routes have relatively few “synchronizedéiaéc-
tions, resulting in very poor mixing. Quality of mixing, exgssed
as the ratio of actual anonymity to the theoretical maximim,
proves as the number of senders and routes increases.

Anonymity loss due to skewed destination distribution Our sec-
ond observation is that skewed destination distributioasaasoci-
ated with very poor relationship anonymity. For example,ig Z
fian distribution with the skew of (in the case of 500 senders, this
means roughly that 76% of senders are communicating with@&0%
destinations) produces relationship anonymity entrop ibthere

are 500 senders. This means that the effective size of theyanity
set is only 64, even though the size of the sender anonyntifpise
the average message exiting the network is close to 380 lfvigic
still noticeably below 500 due to effects of route selection

The explanation is very natural, but worth keeping in mincwh
using mix networks. If most users are communicating withla-re
tively small subset of destinations, then itis easier ferdtiacker to
infer who a certain user is communicating with even if thenmek
preserves sender anonymity of any given message. In otheisyvo
with highly skewed distributions typical of Web browsingfeans,
even a perfect mix network provides poor relationship anaity

High entropy does not guarantee that the relationship is “be
yond suspicion.” Our third observation is that there is a substantial
difference between anonymity measured as entropy and aitgny
measured as min-entropy. This shows that in many situagans
tropy is not an adequate measure of anonymity. For exampfe, ¢
sider the skew-1 Zipfian distribution in the case of 500 sende
Entropy of the distribution of potential destinations fbetaverage
message entering the network is aro@advhich is not great, but
still equivalent to an anonymity set whose effective siz@dis

Min-entropy, however, is less than 3 in this case, and tlestfle
size of the anonymity set is less than 8. Very roughly, thikdates
that the distribution of potential destinations has a lotasfdom-
ness, but some destinations aignificantly likelier than others.
Anonymity “beyond suspicion” is thus not achieved.

4.2 Impact of route selection algorithm

In our second set of experiments, we compare different reerte
lection algorithms. It has been observed that increasiagitimber
of feasible routes may result in worse anonymity [1]. Addangix
to a route helps only if it receives multiple messages at #mees
time. When senders are limited to a few choices for each hop of
their routes, multiple messages are more likely to go thinaing
same mixes at the same hop, resulting in better anonymity.

In a stratified network, route selection is restricted tolasst of
mixes at each hop, greatly reducing the number of feasiliteso
It is thus to be expected that a stratified network providdtebe
anonymity than a free-route network. (This was observeé]in [

In fig. 2, we compute relationship anonymity for a free-route
and a stratified network. The number of destinations is etpal
the number of senders, and the senders’ choice of destisaiso
governed by the Zipfian distribution with skew of 1.2.

When the number of senders is comparable to the number of
mixes, there is a noticeable difference in anonymity betwibe
free-route network and the stratified network. The stratifiet-
work provides better anonymity because the number of feasib
routes is smaller. This difference gradually disappeatb@sum-
ber of routes increases, and anonymity loss due to non+unifies-
tination selection dominates the effects of route selactio

5. CONCLUSIONS

We presented a definition and calculation methodology fiar re
tionship anonymity in mix networks with arbitrary route ¢igu-
rations. As our simulations show, skewed destination ibistions
typical of Web browsing lead to a significant deterioratinrréla-
tionship anonymity even when the number of compromised snixe
is relatively small. Our experiments also demonstrate himgor-
tance of route selection algorithms. Unless the numberdEsois
much greater than the number of mixes, free route selecden r
sults in substantially worse anonymity than selection algms
which restrict the number of feasible routes. Finally, oxjpegi-
ments show that high entropy of anonymity sets does not saces
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Figure 2: Relationship anonymity for different route seledion algorithms (25% probability of node compromise).

ily mean that the network provides anonymity “beyond suspi¢
Even in high-entropy networks, there can be significanediffices
between probabilities of different destinations. Thidsédr new
anonymity metrics that better capture the “beyond suspigioop-
erty in large anonymity sets. Finally, investigating sysiiglity of
different network topologies to long-term intersectiotaeks when
multiple routes from the same sender to the same destinat®n
established over time is an interesting topic of future aese
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