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ABSTRACT
Many applications of mix networks such as anonymous Web brows-
ing requirerelationship anonymity: it should be hard for the at-
tacker to determine who is communicating with whom. Conven-
tional methods for measuring anonymity, however, focus onsender
anonymityinstead. Sender anonymity guarantees that it is difficult
for the attacker to determine the origin of any given messageexiting
the mix network, but this may not be sufficient to ensure relation-
ship anonymity. Even if the attacker cannot identify the origin of
messages arriving to some destination, relationship anonymity will
fail if he can determine with high probability that at least one of the
messages originated from a particular sender, without necessarily
being able to recognize this message among others.

We give a formal definition and a calculation methodology for
relationship anonymity. Our techniques are similar to those used
for sender anonymity, but, unlike sender anonymity, relationship
anonymity is sensitive to the distribution of message destinations.
In particular, Zipfian distributions with skew values characteristic
of Web browsing provide especially poor relationship anonymity.
Our methodology takes route selection algorithms into account,
and incorporates information-theoretic metrics such as entropy and
min-entropy. We illustrate our methodology by calculatingrela-
tionship anonymity in several simulated mix networks.

Categories and Subject Descriptors:
C.2.0[Computer-Communication Networks]: Security and pro-
tection; K.6.5[Security and Protection]

General Terms: Security

Keywords: Anonymity, Privacy, Mix Networks

1. INTRODUCTION
Mix networks, first proposed by Chaum [3], are a practical way

of achieving anonymity on insecure communication networks. In-
tuitively, a mix is a server that accepts several incoming messages
and forwards them to their respective destinations in such away
that an outside observer cannot link an outgoing message with an
incoming message. Mixes are typically assembled into networks,
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intended to provide some degree of anonymity to their users even
if some of the mixes are controlled by the adversary.

In this paper, we focus onrelationship anonymity. As defined
by Pfitzmannet al. [7], “relationship anonymity means that it is
untraceable who communicates with whom.” This is an important
property for many practical applications of mix networks. For ex-
ample, users of an anonymous Web browsing or email system of-
ten wish to hide the fact that they are communicating with a par-
ticular destination. Other definitions of anonymity address a sim-
ilar, but slightly different property. For example, Serjantov and
Danezis [9] consider the attacker’s probability distribution over all
possible senders and recipients of agiven message. Whereas re-
lationship anonymity hides the fact that partyA is communicating
with party B, anonymity of an individual message hides the fact
that A sent it (in the case of sender anonymity) or thatB is its
intended destination (in the case of recipient anonymity).

Sender anonymity and relationship anonymity are not directly
comparable. Consider a set of senders from an oppressive coun-
try who are all anonymously accessing a single politically sensitive
website. Suppose the network provides perfect sender anonymity,
i.e., any message exiting the network is equally likely to have orig-
inated from any active sender. By observing these messages,how-
ever, the attacker can easily infer that all of them have the same
destination. For every active sender, the attacker can thusdeter-
mine with100% certainty that this sender is communicating with
the website, completely breaking relationship anonymity.

This artificial example indicates that (a) sender anonymityis not
sufficient for either recipient anonymity, or relationshipanonymity;
(b) unlike sender anonymity, relationship anonymity is sensitive to
the distribution of potential message destinations; and (c) under
some destination distributions, even a perfectly secure, “black-box”
mix network cannot guarantee relationship anonymity.

We are also interested in the property calledbeyond suspicion
in [8]: the destination with which the user is communicatingshould
not appear significantly more likely than any other possibledesti-
nation. (We will use an even stronger property thatno destination
should appear more likely than others.) Standard metrics such as
entropy of the attacker’s a-posteriori distribution of potential des-
tinations do not capture this property. For example, it is entirely
possible that in a high-entropy distribution some destination is as-
sociated with a probability which is an order of magnitude higher
than the probability of any other destination. This calls for alterna-
tive anonymity metrics that better capture the ratio between proba-
bilities associated with different members of the anonymity set.

Our techniques follow the basic framework of [9], with the ad-
ditional emphasis on min-entropy as a measure of anonymity.The
use of min-entropy was previously proposed by Tóthet al.[10], but
in a very different mix network model.



2. DEFINITIONS AND METRICS
Consider a mix network withN sendersS1, . . . , SN and H

destinationsD1, . . . , DH . The natural way to define relationship
anonymity is via the attacker’s a-posteriori probabilityRAij (i.e.,
probability measured after the attacker has completed his observa-
tions of the mix network) that theith sender is communicating with
jth destination, where1 ≤ i ≤ N, 1 ≤ j ≤ H . Because different
senders may send a different number of messages,[RAi1 . . . RAiH ]
is not a proper probability distribution: for each senderi, RAij val-
ues add up to the number of messages sent by that sender.

Assume that each senderSi sendsni messagesxi1, . . . , xini
.

Each messagexik has one destination. LetRAmsgik[1..H ] be the
probability distribution of its potential destinations.

Entropy vs. min-entropy. Given a message and the probability
distribution of potential destinations of this message, the standard
information-theoretic measure of anonymity isentropyof this dis-
tribution [9, 4]. Informally, entropy is a measure of how “random”
the distribution is. A high entropy value implies that the network
provides a high level of anonymity. Entropy of the distribution
RAmsgx[1..H ], whereRAmsgx[j] is the probability that the desti-
nation of some messagex is Dj , is calculated as

RAentx = −
X

1≤j≤H

RAmsgx[j] log2(RAmsgx[j])

An intuitive interpretation of entropy is that it represents the log-
arithm of the effective size of theanonymity setfor the sender of
a message. For example, a distribution of potential senderswhose
entropy is6 can be interpreted as saying that the sender is indistin-
guishable from63 (= 26 − 1) other senders.

Entropy does not always capture the right anonymity property.
Consider a distribution of100 potential destinations, in which all
but one are equally likely with probability0.009, and a single des-
tination has probability0.109. Entropy of this distribution is6.40,
close to the theoretical maximum of6.64. The “beyond suspi-
cion” property is destroyed, however, because one destination is
100 times likelier than any other. Therefore, we also consider min-
entropy, which captures the probability of thelikeliestdestination:

RAminx = − log2( max
1≤j≤H

(RAmsgx[j]))

3. CALCULATING ANONYMITY
Let m1, m2, . . . , mM be the mix nodes that form the network.

We assume that all routes have the same lengthL, and that mix
nodes and destinations are distinct. (The model is easily adapted
to other scenarios.) Recall that each senderSi is sending messages
xi1, . . . , xini

; let N ′ =
P

i
ni. For each messagexi where1 ≤

i ≤ N ′, its flow fi is the time sequence of mix-to-mix messages
that carry the contents ofxi through the network.

We assume that message are encrypted with a pairwise key when
sent from mix to mix, and that the global attacker can observethe
origin and destination of each (encrypted) message, yet this isall he
can do. In particular, we ignore active attacks such as trickles and
floods, intersection and long-term statistical attacks, traffic analy-
sis, and so on. These attacks would result in even worse anonymity
loss than shown by our experiments.

Consider the discretized timelinet1, . . . , tL. Each “moment”
corresponds to one hop in the messages’ routes. At timetj , a global
attacker observes messagesqj1, . . . , qjN′ arriving to some subset
of mixes. Eachqji carries the contents of a singlexi′ , and for each
xi′ , there exists someqji that carries its contents. (∀i q1i = xi.)
This correspondence, however, is not directly observable by the
attacker due to mixing performed at each hop.

Define the flow matrixFlow : N ′ × L → M so thatFlow[i, j]
contains the destination of messageqji. DefineFlowCount[l, j] =
count1≤k≤N′(Flow[k, j] = ml) to be the number of messages
entering mixml at timetj and leaving it at timetj+1 (except for
j = L, in which case all messages enter their final destinations).

Consider some messagex ∈ {x1, . . . , xN′} that entered the net-
work at timet1. Let ix be the index of this message. We recursively
calculate the probabilityPmsgx[i, j] that messageqji observed by
the attacker at timetj carries the contents ofx. Initially, for all i

Pmsgx[i, 1] =

�
1 if i = ix
0 otherwise

Now consider timetj such that2 ≤ j ≤ L, and messagesqji

where1 ≤ i ≤ N ′. For every mixml where1 ≤ l ≤ M , define

PthruMixx[l, j] =
X

∀i∈[1..N′] s.t.Flow[i,j]=ml

Pmsgx[i, j]

This is the probability that one of the messages enteringml at time
tj carries the contents ofx. The attacker need not knowwhich
message this is. Then define

Pmsgx[i, j] =

8<: Pmsgx[i, j − 1] if ml is compromised

PthruMixx[l,j−1]
FlowCount[l,j−1]

if ml is good

Intuitively, this means that a good mix permutes its incoming
messages and every outgoing message is equally likely to carry the
contents of a given incoming message. By contrast, any permuta-
tion carried out by a compromised mix is completely visible to the
attacker, and does not change the probability that a given message
carries the contents of messagex.

Finally,∀j, 1 ≤ j ≤ H whereH is the number of destinations

RAmsgx[j] =
X

∀k∈[1..N′] s.t.Flow[k,L]=Dj

Pmsgx[k, L]

This distribution allows us to compute relationship anonymity.
Let xi1, . . . , xini

be the messages sent by senderSi at time t1.
The probability thatSi is communicating with destinationDj is

RAij = 1 − Π1≤k≤ni
(1 − RAmsgxik

[j])

4. EXPERIMENTS
We used the methodology described in section 3 to compute rela-

tionship anonymity in several types of mix networks. In our exper-
iments, we assume that the number of destinations is equal tothe
number of senders. Not all destinations necessarily receive mes-
sages, while some destinations may receive multiple messages.

In each experiment, we randomly generate a 5-hop route for ev-
ery message. We consider afree-routenetwork, in which the desti-
nation of each hop is selected randomly from all mixes in the net-
work, and astratifiednetwork, inspired by [5, 6]. In the latter, the
mixes are split into 5 groups, and the destination of theith hop is
selected randomly from the mixes in theith group. For each route
configuration, we calculate destination entropy and min-entropy for
all senders, and average the results across 5,000 simulations.

When using maximum entropy for comparison purposes, we de-
liberately donot take non-uniform destination selection into ac-
count. Our goal is to demonstrate the effects of non-uniformdesti-
nation selection by comparing anonymity when the distribution of
destinations is skewed and when this distribution is uniform. The
maximum entropy curve represents the latter on our plots.

When the actual destination distribution is not uniform, the max-
imum entropy associated with uniform destination distribution may



not be achievable even by a perfect “black-box” anonymity sys-
tem. This is precisely our point. An average user of a mix network
may not know how other users select their destinations. In a truly
peer-to-peer mix network, this information is not available even to
operators of individual nodes. When a user knows only the to-
tal number of other users, network topology, and some assumption
about the fraction of the mixes that are controlled by the adversary,
anonymity under uniform destination selection provides a baseline
against which actual anonymity can be compared.

Previous work on anonymity in large mix networks [6] assumed
that all messages are distributed equally across network links at
each hop. This is not realistic unless the ratio of messages to mixes
is very large, which may not always be the case in practical sce-
narios. It is thus important to consider anonymity loss due to bad
route selection. If the route selected by some user has few intersec-
tions with other users’ routes, then this user will enjoy very poor
anonymity even if all mixes on his route are trustworthy. As our
experiments show, this effect is especially pronounced in networks
where the number of users is comparable to the number of mixes,
as will often be the case in peer-to-peer mix networks.

4.1 Impact of destination distribution
Unlike sender anonymity, relationship anonymity is sensitive to

the distribution of messages’ destinations. In our first setof exper-
iments, we consider the uniformly random distribution (i.e., each
sender selects the destination uniformly at random from thefixed
set of all available destinations) as well as Zipfian distributions
with various skew parameters. In a Zipfian distribution, therelative
probability of occurrence for thenth most popular element is1

nα ,
whereα is the skew. It is believed that real-world Web browsing
patterns are governed by a Zipfian distribution,i.e., a small fraction
of sites account for the majority of traffic destinations [2].

In fig. 1, we show the results for a 50-node free-route network
where any node is compromised with a 25% probability. The num-
ber of senders increases from50 (same as the number of mixes)
to 500. In addition to measuring relationship anonymity, we also
calculate sender anonymity for each message exiting the network.

Anonymity loss due to free route selection.Our first observation
about fig. 1 is that there is a significant anonymity loss regardless
of the destination distribution. This can be explained by statistical
properties of random route selection in a free-route network.

For example, consider a free-route network with 50 senders and
50 mixes. Even if the destination for each message is selected uni-
formly at random (and relationship anonymity is thus close to sim-
ple sender anonymity for each message exiting the network),the
effective anonymity set for the average user is8 rather than50. The
primary reason for this isnot that 25% of mixes are compromised.
In order to mix well, routes of different messages must have many
intersections, and, moreover, messages must arrive to the intersec-
tion mix at approximately the same time, which in our idealized
model means the mix must occupy the same hop in their respective
routes. When 50 routes of 5 nodes each are selected randomly from
50 mixes, the routes have relatively few “synchronized” intersec-
tions, resulting in very poor mixing. Quality of mixing, expressed
as the ratio of actual anonymity to the theoretical maximum,im-
proves as the number of senders and routes increases.

Anonymity loss due to skewed destination distribution.Our sec-
ond observation is that skewed destination distributions are associ-
ated with very poor relationship anonymity. For example, a Zip-
fian distribution with the skew of1 (in the case of 500 senders, this
means roughly that 76% of senders are communicating with 20%of
destinations) produces relationship anonymity entropy of6 if there

are 500 senders. This means that the effective size of the anonymity
set is only 64, even though the size of the sender anonymity set for
the average message exiting the network is close to 380 (which is
still noticeably below 500 due to effects of route selection).

The explanation is very natural, but worth keeping in mind when
using mix networks. If most users are communicating with a rela-
tively small subset of destinations, then it is easier for the attacker to
infer who a certain user is communicating with even if the network
preserves sender anonymity of any given message. In other words,
with highly skewed distributions typical of Web browsing patterns,
even a perfect mix network provides poor relationship anonymity.

High entropy does not guarantee that the relationship is “be-
yond suspicion.”Our third observation is that there is a substantial
difference between anonymity measured as entropy and anonymity
measured as min-entropy. This shows that in many situationsen-
tropy is not an adequate measure of anonymity. For example, con-
sider the skew-1 Zipfian distribution in the case of 500 senders.
Entropy of the distribution of potential destinations for the average
message entering the network is around6, which is not great, but
still equivalent to an anonymity set whose effective size is64.

Min-entropy, however, is less than 3 in this case, and the effective
size of the anonymity set is less than 8. Very roughly, this indicates
that the distribution of potential destinations has a lot ofrandom-
ness, but some destinations aresignificantly likelier than others.
Anonymity “beyond suspicion” is thus not achieved.

4.2 Impact of route selection algorithm
In our second set of experiments, we compare different routese-

lection algorithms. It has been observed that increasing the number
of feasible routes may result in worse anonymity [1]. Addinga mix
to a route helps only if it receives multiple messages at the same
time. When senders are limited to a few choices for each hop of
their routes, multiple messages are more likely to go through the
same mixes at the same hop, resulting in better anonymity.

In a stratified network, route selection is restricted to a subset of
mixes at each hop, greatly reducing the number of feasible routes.
It is thus to be expected that a stratified network provides better
anonymity than a free-route network. (This was observed in [6].)

In fig. 2, we compute relationship anonymity for a free-route
and a stratified network. The number of destinations is equalto
the number of senders, and the senders’ choice of destinations is
governed by the Zipfian distribution with skew of 1.2.

When the number of senders is comparable to the number of
mixes, there is a noticeable difference in anonymity between the
free-route network and the stratified network. The stratified net-
work provides better anonymity because the number of feasible
routes is smaller. This difference gradually disappears asthe num-
ber of routes increases, and anonymity loss due to non-uniform des-
tination selection dominates the effects of route selection.

5. CONCLUSIONS
We presented a definition and calculation methodology for rela-

tionship anonymity in mix networks with arbitrary route configu-
rations. As our simulations show, skewed destination distributions
typical of Web browsing lead to a significant deterioration in rela-
tionship anonymity even when the number of compromised mixes
is relatively small. Our experiments also demonstrate the impor-
tance of route selection algorithms. Unless the number of routes is
much greater than the number of mixes, free route selection re-
sults in substantially worse anonymity than selection algorithms
which restrict the number of feasible routes. Finally, our experi-
ments show that high entropy of anonymity sets does not necessar-
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Figure 1: Relationship anonymity for different destination distributions (25% probability of node compromise).
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Figure 2: Relationship anonymity for different route selection algorithms (25% probability of node compromise).

ily mean that the network provides anonymity “beyond suspicion.”
Even in high-entropy networks, there can be significant differences
between probabilities of different destinations. This calls for new
anonymity metrics that better capture the “beyond suspicion” prop-
erty in large anonymity sets. Finally, investigating susceptibility of
different network topologies to long-term intersection attacks when
multiple routes from the same sender to the same destinationare
established over time is an interesting topic of future research.
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